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a b s t r a c t

The paper presents a method for computer-aided detection of lateral sigmatism. The aim of

the study is to design an automated sigmatism diagnosis tool. For that purpose, a reference

speech corpus has been collected. It contains 438 recordings of a phoneme /s/ surrounded by

certain vowels with normative and simulated pathological pronunciation. The acoustic signal

is recorded with an acoustic mask, which is a set of microphones organised in a semi-

cylindrical surface around the subject's face. Frames containing /s/ phoneme are subjected to

beamforming and feature extraction. Two different feature vectors containing, e.g., Mel-

frequency cepstral coefficients and fricative formants, are defined and evaluated in terms of

binary classification involving support vector machines. A single-channel analysis is con-

fronted with multi-channel processing. The experimental results show that the multi-

channel speech signal processing supported by beamforming is able to increase the pathology

detection capabilities in general.
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1. Introduction

Sigmatism (lisping) is one of the most frequent speech
pathologies in children [1–3]. It is related to misarticulation
of sibilant phonemes (sibilants), which, e.g., in Polish are: //, //,
/AA/ [4]. Depending on the articulation pattern various types
of sigmatism can be identified, e.g., interdental, lateral, nasal,
strident, or palatal. In lateral lisp, a typical medial air flow is
disturbed by closing the organs responsible for articulation [5].
Thus, lateral air flow occurs.
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Studies on speech disorders are dominated by observation
examinations, which makes their conclusions hardly objec-
tive. The speech diagnosis of sigmatism is mostly based on
observation of the articulators' work. Nevertheless, it is not
always possible to precisely observe and describe phenomena
taking place in the oral cavity, especially in children. In such
cases the diagnosis could be assisted with acoustic analysis
techniques. A computer-assisted speech diagnosis tool could
help in the diagnosis and therapy in several ways, e.g.,
indicating articulation specifics, which are difficult to observe,
or creating home rehabilitation multimedia tools.
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Acoustic studies concerning methods of pronunciation
error detection are conducted in different countries. The
methods are often based on popular speech analysis techni-
ques. However, most of the proposed tools are designed for
second-language learners [6–9]. According to our knowledge,
only two propositions of speech analysis methods for
sigmatism diagnosis assistance can be found in literature
[10,11]. These projects focus on a general evaluation of the
phoneme (normative/pathology), not on a detailed analysis of
any sigmatism type. Solutions dedicated to lateral sigmatism
patients can hardly be found. As this kind of lisp concerns a
lateral air flow, acoustic signal analysis based on a single-
channel acquisition may not provide sufficient amount of
information [12,13]. The employment of a larger number of
microphones could allow for using a wide spectrum of spatial
signal processing methods, like beamforming [14]. Beamform-
ing techniques rely on a space-time processing of signals
acquired by microphone matrix and are used, i.a., in radar
systems, seismology, and acoustics [15,16]. Signals from
sensors spread over a matrix are subjected to a spectral
analysis in terms of amplitude and phase, which determines
their mutual correspondence. An example of a study on
normative phonemes acoustic description based on a micro-
phone matrix is described in [17].

The aim of this study is to design a diagnostic tool in order
to objectify the lateral sigmatism diagnosis and support the
therapeutic process. The main contribution of this study is the
methodology for processing and classifying spatial speech
signals containing phoneme /s/ recorded with a multi-channel
registration device described in [18]. Feature vectors combin-
ing information recorded in side channels are extracted and
employed at the classification stage. The side channel signals
are obtained by means of digital beamforming techniques.
Also, certain features are determined by aggregating signals
acquired in different locations. This spatial analysis approach
for /s/ laterality evaluation is the main novelty of the study.

The authors collected a reference database including
mispronunciations simulated by adults under the supervision
of a speech pathologist. The examinations were conducted
over the phoneme /s/. This phoneme has been chosen as
it appears early in speech evolution and is relatively easy
Fig. 1 – System workflow. Signals acquired by the measuring 
to induce. Simulation of phoneme /s/ pronunciation with
lateral lisping is not particularly difficult for the adult under
the speech therapist control. Promising results obtained and
described in this paper encourage to develop the data
acquisition tool for children examination.

The paper is organised as follows. The methodology is
introduced in Section 2 in terms of signal acquisition, process-
ing, feature extraction, and classification. Section 3 presents the
materials, experimental setup, and obtained results. The study
is discussed in Section 4 in terms of its impact and future
development perspectives. Section 5 concludes the paper.

2. Methods

The consecutive steps of the acoustic signal acquisition and
analysis procedure are presented in Fig. 1.

2.1. Signal acquisition

The acquisition device (acoustic mask, Fig. 2) was designed
and prototyped by authors of this paper and speech therapists
specialized in sigmatism [18]. The device is adjustable to fit
any head size and enables multi-channel, spatial, repeatable
sound acquisition.

The arrangement of the increased number of microphones
on a semi-cylindrical surface brings data from various
locations. Each sensor is frontally oriented in relation to the
source sound. Pathological lateral air flow occurrence can be
reflected in the recordings, as changes of amplitude and lateral
noise become possible to acquire [18].

2.2. Signal analysis

2.2.1. Segmentation
Manual segmentation is performed in order to extract regions
of interest (sibilant sounds) from the recordings. The segmen-
tation is conducted by a speech analysis expert and a speech
therapist. The segment boundaries are marked on the
spectrogram of the central microphone signal, and then
applied to all other channels.
equipment (left) are subjected to acoustic analysis (right).



Fig. 2 – The acoustic mask – measuring device, with example configuration of adjustable microphone arrangement.
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2.2.2. Beamforming and preprocessing
Beamforming is performed in order to aggregate data from
different channels [16]. It considers the delays in different
microphone sound registration. Thus, it also emphasizes the
features of the side signals (left and right), e.g., noise resulting
from the lateral air flow. In the presented device, microphones
are placed on a semi-cylindrical surface. Therefore, they
cannot be treated as one microphone array. However, all left/
right microphones are collinear, so they can be analyzed as
two separate uniform linear arrays (ULA) [19,20]. The central
microphone is considered as an independent source of the
signal. Overall, the beamforming stage aggregates all recorded
data to 3 signals: central (from the central microphone), left,
and right (based on partial data from lateral microphones).

The presented method employs Filter-and-Sum beam-
forming [21]. First, delays resulting from different angles of
wave incidence on the microphone array are determined
(Fig. 3). The angles are calculated using Direction-of-Arrival
(DOA) estimation method [20,22], with bottom microphones
used as references for linear matrices. Next, the channels are
filtered with a high-pass finite impulse response (FIR) filter.
The filter employed in this study is adjusted to the friction
noise characteristic to the /s/ sound (high-pass, 181st-order
filter with cut-off frequency 3 kHz). Finally, the signals are
summed considering previously calculated delays.
Fig. 3 – Filter-and-Sum be
The three signals obtained as a result of the beamforming
stage (left, right, and central channel) are subsequently
normalized to range �1; 1½ � using the maximal and minimal
values over all channels. Then, the preemphasis filtering is
performed and the Hamming window is employed to divide
the signal into 25 ms frames with 10 ms overlap. Preemphasis
and windowing are performed independently for the left, right,
and central signal [23,24].

2.2.3. Feature extraction
The following features are extracted from each frame of the
analyzed signal:

� 1st to 13th Mel-frequency cepstral coefficients (MFCC) [25–28],
� root mean square value (RMS),
� 1st to 3rd fricative formants (FF) and their levels (FFL)

[29,30,28].

The MFCC are successfully used in speech recognition,
as they reflect the ear's natural response for acoustic
stimulation. The MFCC extraction procedure is presented in
Fig. 4. Spectrum of the frame is mapped onto the Mel scale
using a Mel filterbank. Then, the logarithms of the resulting
data are calculated and discrete cosine transform (DCT)
is performed, yielding the MFCC values.
amforming workflow.



Fig. 4 – Flowchart of the feature extraction procedure.
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The root mean square value is related to the energy of the
signal registered in specific channels. In normative speech,
RMS values for central channel are higher than for any other.
During lateral air flow, side channels may produce higher
values of this feature. RMS is calculated according to a formula:

RMSn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
S

XS
i¼1

jsij2
vuut (1)

where n is the index of current frame, S is the count of samples
in current frame and si is the current signal sample.

Fricative formants are used in classification of different
sibilants as one of main distinctive features in this area [31,32].
FFs correspond to concentrations of energy in high-frequency
Fig. 5 – The method of fe
bands of the analyzed signal. Formants are characterized by
their levels and frequencies and are often employed for
sibilants recognition. In this study, fricative formants are
calculated according to the method previously described in [33].
First, the three highest peaks in the frame's spectrum above 3
kHz are found. Then, the obtained frequencies and levels are
median-filtered within a segment to reduce the noise.

Feature values obtained for consecutive frames are
aggregated in order to create a single feature set for each
segment (Fig. 5). Mean values are calculated for MFCC. The
third quantiles are calculated for other features. Feature
extraction is performed for each channel (central, left, and
right) independently.

Feature vectors for two different experiments conducted
within the study are presented in Tab. 1. In the first
atures aggregation.



Table 1 – Feature vectors used in the experiments. Subscripts C, L, R denote central, left, and right channel, respectively. q3(�)
denotes the third quantile of a set.

SC - single-channel MC - multi-channel

FV1 ½MFCC1;C; . . .; MFCC13;C� ½MFCC1;C; . . .; MFCC13;C;
MFCC1;L; . . .; MFCC13;L;
MFCC1;R; . . .; MFCC13;R�

FV2 ½MFCC1;C; . . .; MFCC13;C;
q3ðRMSCÞ;
q3ðFF0CÞ; q3ðFF1CÞ; q3ðFF2CÞ;
q3ðFFL0CÞ; q3ðFFL1CÞ; q3ðFFL2CÞ�

½MFCC1;C; . . .; MFCC13;C;
MFCC1;L; . . .; MFCC13;L;
MFCC1;R; . . .; MFCC13;R;
q3ðRMSCÞ; q3ðRMSLÞ; q3ðRMSRÞ;
q3ðFF0CÞ; q3ðFF1CÞ; q3ðFF2CÞ;
q3ðFFL0CÞ; q3ðFFL1CÞ; q3ðFFL2CÞ;
q3ðFFL0LÞ; q3ðFFL1LÞ; q3ðFFL2LÞ;
q3ðFFL0RÞ; q3ðFFL1RÞ; q3ðFFL2RÞ�

Fig. 6 – Position of the tongue during sigmatism simulation.
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experiment, the classification is conducted using average
values of MFCC only. Therefore, the feature vector for single-
channel (SC) case contains thirteen MFCC for the central
channel, and the feature vector for multi-channel (MC) case
contains MFCC values for all three channels (central, left, and
right). In the second experiment the feature vectors are
extended with aggregated RMS values for the central channel,
RMS ratios for left and right channel, frequencies of fricative
formants, and levels of fricative formants (for central channel
in SC case, and for all the channels in MC case). Frequencies of
fricative formants for the central channel are employed in both
SC and MC analysis, as the formants' frequencies are similar
for all the channels.

2.2.4. Classification
The binary classification (pathology/norm) is performed using
support vector machine (SVM) with linear kernel function
[34,35]. SVM divides the problem space into two subspaces by
determining a hyperplane separating training samples. The
classifier is supplied with features selected from the set
described in previous section.

The normalized regularization coefficient C was initially set
to 1.0 and then investigated by means of receiver operating
characteristic (ROC) analysis. Sequential Minimal Optimiza-
tion (SMO) was used to find the separating hyperplane [36]. The
value for the Karush-Kuhn-Tucker (KKT) conditions for the
SMO training method was set to 0.6, meaning 60% of the
variables are allowed to violate the KKT conditions. Before
training, the data was standardized by centering the data
points at their mean and scaling them to have unit standard
deviation.

3. Experiments and results

3.1. Materials

A speech corpus was recorded for the needs of the study. The
speech material was designed by speech pathologists and
consisted of pseudowords containing phoneme /s/ surrounded
by vowels (ASA, ESE, ISI, OSO, USU, YSY). A similar vocalic
environment before and after the phoneme reduces the
coarticulation impact on the analyzed phoneme. The speakers
were asked to pronounce the pseudowords in two ways: (1)
properly, according to Polish phonetic norm, and (2) simulating
lateral sigmatism with front occlusion caused by touching
foreteeth with the tip of the tongue (Fig. 6). The speaker group
consisted of speech therapists, experienced in sigmatism
diagnosis and therapy, as well as adults with proper pronunci-
ation who were instructed how to perform the simulation. In
total, 438 pseudowords pronounced by 7 subjects (3 male and 4
female) were included in the speech corpus.

Audio recordings were acquired at the sampling rate of
44.1 kHz and the resolution of 16 bit. The registration was
performed in a quiet room with no audible noise sources. At
each time, the acoustic mask was stabilized on the subject's
head with fastening straps to calibrate the central microphone
with the subject's philtrum.

3.2. Experiment setup

The aim of the experiments was to compare the efficiency of
pronunciation pathology detection for single-channel (SC) and
multi-channel (MC) analysis. A total of 7 � 2 �2 = 28 separate
classification experiments have been conducted according
to the following system settings and parameters:

� six experiments for each pseudoword separately and one
additional experiment over the entire database (6 + 1 cases);

� a single microphone track vs. multi-channel (2 cases);
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� two different feature vectors as defined in Section 2.2.3 (two
cases).

In order to secure the evaluation reliability by means of
training and testing sets independence, the experiments
involved a leave-subject-out 7-fold cross validation scheme
[37,38]. The database was divided into 7 groups, each
containing recordings of a single subject. Each experiment
yielded the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) pathology detec-
tions. On their basis, classification accuracy measures were
determined:

� sensitivity:

TPR ¼ TP
TP þ FN

; (2)

� specificity:

SPC ¼ TN
TN þ FP

; (3)

� accuracy:

ACC ¼ TP þ TN
TP þ FP þ FN þ TN

: (4)
Fig. 7 – A single-channel vs. multi-channel classification efficienc
in various feature vectors: FV1 (a) and FV2 (b) with the normaliz
polynomial kernel. Paired bars reflect the corresponding single-
� precision:

PPV ¼ TP
TP þ FP

; (5)

� F1 score:

F1 ¼ 2 � TP
2 � TP þ FP þ FN

: (6)

Fig. 7 presents the sensitivity, specificity, accuracy, preci-
sion and F1 score values obtained over the entire audio dataset
of 438 recordings using both feature vectors (FV1, top, and FV2,
bottom) in a single microphone mode (SC) and with the Filter-
and-Sum beamforming (MC), with the normalized SVM
regularization coefficient C = 0.11 and 4th order polynomial
kernel. A ROC analysis has been performed over the entire
dataset ('all') with the normalized SVM regularization coeffi-
cient C used as variable parameter. Fig. 8 presents the ROC
curves for different feature vectors and single- and multi-
channel acquisition, each with three different SVM kernel
functions, whereas Table 2 presents the corresponding area
under ROC curve (AUC) values. The algorithm settings used
in the experiment illustrated in Fig. 7 were established based
on the ROC analysis.
y in the leave-subject-out 7-fold cross validation experiment
ed SVM regularization coefficient C = 0.11 and 4th order
channel vs. multi-channel experiment.



Fig. 8 – ROC curves for FV1 (a) and FV2 (b) over the single
channel (dashed line) and multi-channel (solid line) signals
in the leave-subject-out 7-fold cross validation experiment
('all' pseudowords). In each case three pairs of curves refer
to three different SVM kernel functions. The normalized
SVM regularization coefficient C was used as the ROC
parameter.

Table 2 – The AUC values for different settings corre-
sponding to Fig. 8 in the leave-subject-out 7-fold cross
validation experiment.

Feature vector FV1 FV2

Single/multi-channel SC MC SC MC

SVM kernel Linear 0.87 0.85 0.83 0.83
RBF 0.89 0.88 0.89 0.90

Polynomial 0.91 0.91 0.93 0.94
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In order to additionally validate the system, another
experiment was performed involving 7 speakers other than
in the original database. They were recorded according to the
acquisition protocol described in Section 3.1, yielding another
set of pseudowords of two classes. The classifier was trained
using the original database and validated using the new one.
Results obtained over the entire dataset of pseudowords ('all')
are presented in Fig. 9 with the corresponding AUC values
gathered in Table 3.
4. Discussion

Speech pathology detection investigated in this paper can be
summarized and discussed in several aspects. First of all, the
employment of typically used features (MFCC) extracted from
the central audio channel provides classification accuracy
comparable to the results reported earlier in the literature
[33,11,10]. In order to address the speaker independency and
detection repeatability issues we employed the leave-subject-
out 7-fold cross validation as well as additional testing
involving independent speakers.

Digital beamforming used for spatial aggregation of audio
signal is able to emphasize important indicators of pathologi-
cal realizations of the sibilant /s/. The spatial feature values are
related to noise patterns acquirable in side areas due to
dismedial air flow. For example, inter-microphone energy
ratios improved the efficiency of pathology detection [18]. The
high-pass filtering used as a part of beamforming allows for
selection of a narrow frequency band with patterns specific for
a chosen sibilant [39].

The main goal of the study was to verify whether the use of
additional audio signals acquired from multiple locations
around the patient mouth can improve mispronunciation
detection accuracy. Results obtained with the use of Filter-
and-Sum beamforming and proposed feature vectors confirm
the above assumption in general.

The feature vector extended by RMS and fricative formants
(FV2) provides generally higher classification accuracy scores.
Fig. 7b indicates the advantage of the multi-channel signal
processing over the single-channel system. Fig. 8 and Table 2
prove that the extended vector (FV2) of features extracted from
the multi-channel signal and passed to the SVM with
polynomial kernel outperforms the other approaches. The
additional experiment involving independent speakers (Fig. 9
and Table 3) support the above conclusions. Note, that
proposed definition of features aggregated throughout each
time segment (e.g. averaging the frame-wise MFCC or selection
of the third quantile for the remaining features) fixes the
feature space dimensionality and makes the analysis more
flexible and independent of the segment duration.

5. Conclusion

The paper describes a method for processing of acoustic
signals recorded by the multi-channel acquisition system. The
aim was to reliably detect mispronunciation of a phoneme /s/
for computer-aided diagnosis of lateral sigmatism. The
methodology involving spatial signal analysis, Filter-and-
Sum beamforming, and proposed segment-wise feature
vectors has proven its detection capabilities outperforming
the single-channel-based analysis over a database of norma-
tive and simulated pathological /s/ realizations. The obtained
results set some possibilities of the future research for the
development of system for automatic speech diagnosis and
therapy support: (a) employment of other sibilants in the
detection process, (b) collection of a large reference database of
recordings involving speech therapy patients, (c) further
development of the spatial, multi-channel acquisition device,



Fig. 9 – A single-channel (blue) vs. multi-channel (yellow) classification efficiency comparison ('all' pseudowords) in the
validation experiment involving independent speakers in various feature vectors: FV1 (a) and FV2 (c) with the normalized
SVM regularization coefficient C = 0.11 and 4th order polynomial kernel. Paired bars reflect the corresponding single-channel
vs. multi-channel experiment. ROC curves for FV1 (b) and FV2 (d) plotted for the polynomial SVM kernel over the single
channel (dashed line) and multi-channel (solid line) signals. The normalized SVM regularization coefficient C was used as
the ROC parameter.

Table 3 – The AUC values for different settings corre-
sponding to Fig. 9 in the validation experiment involving
independent speakers.

Feature vector FV1 FV2

Single/multi-channel SC MC SC MC
Polynomial SVM kernel 0.63 0.76 0.69 0.80
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(d) definition and analysis of new hybrid features merging
acoustic and articulation aspects of speech generation.
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